
LibraPIM: Dynamic Load Rebalancing to Maximize Utilization in
PIM-Assisted LLM Inference Systems

Hyeongjun Cho
Sungkyunkwan University

Suwon, Korea
cho0624ck@skku.edu

Yoonho Jang
Sungkyunkwan University

Suwon, Korea
jyh8807@skku.edu

Hyungi Kim
Sungkyunkwan University

Suwon, Korea
khg718@skku.edu

Seongwook Kim
Sungkyunkwan University

Suwon, Korea
su8939@skku.edu

Keewon Kwon
Sungkyunkwan University

Suwon, Korea
keewkwon@skku.edu

Gwangsun Kim
POSTECH

Suwon, Korea
g.kim@postech.ac.kr

Seokin Hong
Sungkyunkwan University

Suwon, Korea
seokin@skku.edu

Abstract
Large languagemodels (LLMs) require inference systems that can

handle both compute- and memory-intensive workloads. GPUs and
NPUs (referred to as xPUs) efficiently process compute-intensive
layers, while Processing-In-Memory (PIM) architectures are well
suited for memory-bound stages. To exploit this complementary
relationship, recent LLM inference systems have adopted heteroge-
neous architectures integrating xPUs with PIM units. However, this
integration poses several challenges. Tight execution dependencies
between the two devices limit concurrency, as PIM often must wait
for data produced by the xPUs. Moreover, batch size and sequence
length affect the computational load on PIM and the accelerator
differently, leading to execution imbalance across devices.

To address these challenges, we propose LibraPIM, a novel
PIM framework that orchestrates workload rebalancing and con-
current execution between compute accelerators and in-memory
compute units, enabling efficient and scalable LLM inference. Li-
braPIM addresses the above challenges through two key techniques:
Dynamic Batch Offloading (DBO), which adaptively redirects
portions of the workload to the underutilized device based on run-
time profiling, and Dual-Path Execution (DEX), which enables
concurrent PIM operations and memory accesses through sub-bank
partitioning with minimal hardware overhead. Together, these tech-
niques improve resource utilization across heterogeneous devices,
thereby increasing system throughput in LLM inference. Our exper-
imental results demonstrate that LibraPIM achieves 6.2× average
speedup over the baseline PIM-enabled system and delivers a 2.1×
average speedup compared to a state-of-the-art approach.

Keywords
LLM inference, Processing-In-Memory, Load balancing

1 Introduction
Transformer-based large language models (LLMs) [5, 15, 52, 53,

59] have been widely adopted across various applications, includ-
ing natural language processing [25, 55] and other multimodal

Saved

xPU Time

PIM Time

GEMM

GEMV

: Offloaded batch: Batch group 0

(b) Batch pipelining (NeuPIMs[21] and AttAcc[42])

(a) Baseline PIM-xPU system

(c) LibraPIM (Ours)

xPU Time

PIM Time

GEMM GEMM

GEMV GEMV

GEMM

GEMV

xPU Time

PIM Time

GEMM

GEMVGEMM

GEMM

GEMVGEMM

GEMM

GEMVGEMM

Offloading

Saved

: Batch group 1 : Batch group 2

Operation flow

Figure 1: Execution timeline of LLM inference in (a) base-
line, (b) batch-pipelined, and (c) LibraPIM-enabled systems.
LibraPIM reduces idle time through dynamic task offloading
and concurrent execution.
tasks [39, 51, 54]. LLM inference typically relies on compute accel-
erators, such as GPUs [47, 48] and NPUs [8, 18, 19, 26, 32, 45], which
exploit massive parallelism to accelerate computationally intensive
layers. To improve accelerator utilization and overall throughput,
LLM inference systems often employ a batching scheme [9, 16, 57],
where multiple requests are aggregated into a single matrix–matrix
multiplication (GEMM). This approach enables efficient processing
of QKV generation, output projection, and feed-forward layers.

Unlike other transformer operations, however, the multi-head
attention (MHA) layer cannot benefit from the batching, as each
token generates its own query, key, and value vectors. This prevents
aggregation across tokens, leaving the computation in the form
of matrix–vector multiplications (GEMVs), which are inherently
memory-bound [1, 41, 44, 60]. As a result, MHA becomes a per-
sistent performance bottleneck in LLM inference, posing a major
challenge in efficiently accelerating transformer workloads.

A promising direction to address this challenge is the use of
Processing-In-Memory (PIM) devices [2, 3, 12, 13, 27–29, 38, 46, 50,
56]. Recent DRAM-based PIM architectures integrate lightweight
processing units within each memory bank, exploiting high internal
bandwidth to perform GEMV [20, 36, 61]. While PIM effectively

PACT 2025, November 3-6, Irvine, California, USA Hyeongjun Cho, Yoonho Jang, Hyungi Kim, Seongwook Kim, Keewon Kwon, Gwangsun Kim, and Seokin Hong

addresses memory-bound operations, it lacks the computing capa-
bility to perform GEMM. In contrast, accelerators such as GPUs and
NPUs (xPUs) offer high arithmetic throughput but remain limited
by memory-bound operations. To exploit these complementary
strengths, modern inference systems combine PIM and xPUs into a
heterogeneous architecture [21, 44, 49]: GEMV layers (e.g., MHA)
execute on PIM, while GEMM layers run on xPUs, achieving high
compute throughput while alleviating memory bottlenecks.

Although heterogeneous systems that integrate PIM and xPUs
offer theoretical benefits, they often fail to fully utilize both devices
in practice, primarily due to two fundamental limitations: static
workload allocation and serial execution dependencies across layers.
Figure 1a illustrates static workload allocation in a conventional
PIM-xPU heterogeneous systems, where GEMM operations execute
entirely on the xPUs before GEMV can begin on the PIM. This strict
sequencing enforces device serialization: one device remains idle
while waiting for the other to finish, leading to underutilization
and execution stalls.

To mitigate this inefficiency, recent work [21, 44] proposes batch
pipelining, which overlaps the execution of independent batch
groups to improve concurrency [9, 16, 57]. As shown in Figure 1b,
this technique assigns different batch groups to each device in a
staggered manner, allowing partial overlap between GEMM and
GEMV executions. While this approach increases parallelism be-
tween compute- and memory-bound operations, it remains vulnera-
ble to load imbalance between PIM and xPUs, as it still relies on static
workload allocation. As illustrated, if GEMM takes longer to execute
than GEMV (or vice versa), one device finishes early and stays idle.

This paper addresses the problem of imbalanced device utiliza-
tion in heterogeneous PIM-xPU architectures for LLM inference.
To tackle this challenge, we propose LibraPIM, a novel PIM frame-
work that dynamically rebalances workloads between xPUs and
in-memory compute units. LibraPIM achieves this goal through
two key mechanisms: Dynamic Batch Offloading (DBO) and
Dual-Path EXecution (DEX).

The DBO mechanism adaptively redistributes workloads be-
tween PIM and xPUs to balance execution latencies. Unlike prior
approaches that statically assign GEMM to xPUs and GEMV to
PIM, DBO enables flexible task-to-device mapping, allowing PIM to
execute a portion of GEMM operations and xPUs to handle GEMV
when beneficial. To this end, DBO employs a runtime scheduler that
estimates the execution time of each device based on model-specific
parameters such as batch size, sequence length, and hidden dimen-
sion size. The scheduler identifies the device with longer projected
latency and selectively offloads part of its workload to the other
device. For instance, when xPUs are projected to take longer for
GEMM, a portion of GEMM can be reassigned to PIM, as shown
in Figure 1c. Conversely, if GEMV execution on PIM incurs longer
latency, it can be offloaded to xPUs.

The DEX mechanism enables concurrent execution of PIM and
xPU operations by decoupling their DRAM access paths. In a con-
ventional PIM architectures, memory requests from the xPU can
block PIM execution due to contention for the same DRAM bank.
DEX resolves this by introducing a lightweight modification that
partitions each bank into two sub-banks using slicing transistors.
This structural separation allows normal memory accesses and PIM

Decoder 0

Decoder N-1

Embedding

Decoder 1

ꞏꞏꞏ

4 Inputs
(4 Vectors)

4 Output
(4 Vectors)

La
ye

rs

Pr
oj

ec
ti

on

La
ye

rN
or

m

Re
si

du
al

Fe
ed

Fo

rw
ar

dScore

Softmax

ContextM
ul

ti
-H

ea
d

Q
K

V
ge

ne
ra

ti
on

D
at

af
lo

w

W
WeightVector

K,V

4 Batch

W
Weight

W
Weight

La
ye

rN
or

m

Re
si

du
al

4 GEMV operations

: GEMM operation : GEMV operation : Vector processing

Figure 2: Computation flow of transformer-based LLM infer-
ence, illustrating how GEMM, GEMV, and vector processing
operations are distributed across the decoder layer.

operations to proceed in parallel within the same bank. By overlap-
ping xPU memory access with PIM computation, DEX eliminates
inter-device interference and accelerates batch offloading, lead-
ing to improved system throughput without significant hardware
changes.

Our evaluation demonstrates that LibraPIM effectively improves
device utilization via its two key mechanisms. At a sequence length
of 4096, LibraPIM achieves 38% PIM utilization and 77% NPU uti-
lization, which are significantly higher than those of the state-of-
the-art architectures (6% and 13% in AttAcc [44], and 21% and 62%
in NeuPIMs [21]). This utilization improvement translates into an
average of 6.2× speedup over a conventional PIM-xNPU architec-
ture. LibraPIM also outperforms state-of-the-art architectures such
as AttAcc and NeuPIMs by 4.4× and 2.1× on average, respectively.

The key contributions of this paper are summarized as follows:

• We analyze the causes of device utilization imbalance in
PIM–xPU architectures for LLM inference. In particular, we
characterize the impact of batch size and sequence length on
the imbalance and expose the limitations of batch pipelining.
• We propose LibraPIM, a novel framework that dynamically
balances workloads between PIM and xPUs. LibraPIM intro-
duces Dynamic Batch Offloading, a scheduling mechanism
that adaptively offloads portions of GEMM and GEMV opera-
tions between devices based on predicted execution latency.
• LibraPIM employs Dual-Path Execution mechanism, a light-
weight DRAM architectural enhancement that partitions
each bank into sub-banks to physically decouple conven-
tional memory accesses from PIM operations, enabling true
concurrent execution with minimal hardware modifications.

2 Background
2.1 Batched LLM Inference

Figure 2 illustrates the token generation process in a transformer-
based LLM. During the token generation, the transformer decoder
takes the embedded input token as a vector and iteratively generates
output tokens through its decoders. The output token is then fed
back into the decoder to produce the next token.

The decoder consists mainly of memory-intensive GEMV (Gen-
eral Matrix–Vector multiplication) operations, which impose signif-
icant pressure on memory bandwidth [27]. To alleviate this, recent
LLM inference systems often employ batched inference approach

LibraPIM: Dynamic Load Rebalancing to Maximize Utilization in PIM-Assisted LLM Inference Systems PACT 2025, November 3-6, Irvine, California, USA

(a) DRAM organization & Read operation (b) PIM architecture

Bank

ꞏ ꞏ ꞏ

ꞏꞏꞏ

Subarray
Row buffer

❸
Re

ad

❶Row activation

IOSA

Local I/O

❷
C

ol
um

n
de

co
di

ng

Bank

ꞏ ꞏ ꞏ

ꞏꞏꞏ

Activated row

Subarray
Row buffer

Buffer

G
lo

ba
l B

uf
fe

r

IOSA

Vector
I/

O
 lo

gi
c

I/
O

 lo
gi

c

MAC Unit
Row buffer
Subarray

: Read operation path : PIM operation path

Figure 3: DRAM organization and its read operation flow
(left) and its extension to a PIM architecture (right).

that processes multiple input vectors simultaneously [9, 16, 57].
With batching, components such as Query, Key, and Value gen-
eration (QKV), projection, and the feed-forward network (FFN)
share weights across input vectors, converting GEMV into GEMM
(General Matrix–Matrix multiplication), which can be efficiently
executed on GPUs or NPUs (collectively referred to as xPUs).

However, as shown in Figure 2, multi-head attention (MHA) re-
mains inherently memory-intensive. This is because, unlike other
layers, MHA cannot share query, key, and value vectors across
input tokens, as each token generates its own unique set for self-
attention computations (yellow box in Figure 2). As a result, each
input vector requires a separate GEMV operation, leading to se-
quential processing. This increases memory bandwidth demands
and creates a significant bottleneck in the LLM inference.

2.2 DRAM-based PIM Architectures
Processing-In-Memory (PIM) technology provides an effective

solution for handling memory-intensive tasks [2, 50, 56]. To pro-
vide architectural context, Figure 3 illustrates a standard DRAM
organization and its read operation (left), alongside a representative
PIM design, AiM [20], implemented in an HBM2 configuration [24]
(right). The figure shows how data is read from a conventional
DRAM bank and how PIM extends this pathway to support near-
data computation using local compute units.

A DRAM die consists of multiple banks that can operate inde-
pendently. Each bank is further divided into multiple subarrays,
which are structured as two-dimensional memory cell arrays. Each
subarray contains a row buffer that amplifies data for reliable read
or write. During a read operation, the bank first selects the subar-
ray containing the requested data and activates the corresponding
row (1KB size of data), loading it into the row buffer (❶). Next, the
row buffer transfers data (256-bit), based on the specified column
address, through the Local I/O path to the IOSA (❷). Finally, the
IOSA amplifies the received data and transfers it to the I/O logic,
which is connected to the external data bus (❸).

Recent PIM architectures integrate Multiply-and-Accumulate
(MAC) units directly within memory banks [10, 20, 36], as shown
in Figure 3b. This implementation reads data from the subarray like
a normal read operation, enabling rapid in-memory computation
by utilizing bank-level parallelism. While the PIM device can ef-
ficiently execute memory-intensive operations such as GEMV, it
faces challenges in accelerating compute-intensive workloads due
to the limited number of MAC units and lower internal memory
clock speeds. To address this challenge, recent research has focused
on using PIM devices alongside xPUs in LLM inference systems.

These heterogeneous PIM-xPU systems aim to leverage the comple-
mentary strengths of both processing components for improving
overall system performance in LLM inference.

2.3 Limitation of Heterogeneous PIM-xPU
Systems: Device Underutilization

The heterogeneous PIM-xPU systems accelerate LLM inference
by distributing workloads according to their computational charac-
teristics. In Figure 2, compute-intensive operations (green blocks)
are executed on processing units (xPUs), while memory-intensive
operations (yellow blocks) are executed on PIM devices. Figure 4
illustrates the overview of device-level operations and data flows. In
(a), xPUs read weight matrices from DRAM equipped with PIM de-
vices and perform MAC operations on input vectors for the GEMM
stage. In (b), PIM devices receive the Q, K, and V vectors produced
by the xPUs and perform the GEMV operation between the query
and key/value matrices.

While the workload partitioning across computing devices lever-
ages each device’s strengths in a heterogeneous system, conven-
tional heterogeneous systems still struggle to fully utilize all devices
during LLM inference due to serial dependencies. As shown in Fig-
ure 5a, each device begins its assigned workload only after the other
completes its task. This results in idle periods for one device while
the other is active, reducing overall system utilization.

2.4 Recent Attempt: Batch Pipelining
To address this limitation, prior works introduce a batch pipelin-

ing technique that enables xPUs and PIM devices to execute con-
currently by overlapping computation across independent batch
groups [21, 44]. As illustrated in Figure 5b, the entire input batch
is divided into smaller batch groups (e.g., A and B), which are pro-
cessed in a staggered manner. While xPUs handle the QKV and
FFN computations for group B, the MHA layer for group A is si-
multaneously executed on the PIM. Once xPUs complete group B
and move to group A, the PIM begins processing MHA for group
B. This interleaved execution reduces idle time for both devices by
decoupling their execution timelines, thereby improving resource
utilization compared to the serialized execution shown in Figure 5a.

3 Motivation
This section identifies two challenges in the heterogeneous

PIM–xPU systems with batch pipelining. First, variations in in-
put parameters create execution imbalances between PIM and xPU
devices, resulting in severe resource underutilization. Second, ex-
isting batch pipelining architectures, particularly those requiring

(a) GEMM processing

Interconnect Interconnect

(b) GEMV processing
PIMPIMPIMPIM

xPU (GPU, NPU, etc)

PIMPIMPIMPIM

xPU (GPU, NPU, etc)

W Vector Unit Vector Unit

K,V W K,V WK,V W K,V W K,V W K,V WK,V W K,V W

Read operation PIM operation

Figure 4: Execution flow of LLM inference in a heterogeneous
PIM-xPU system, where (a) GEMM operations are processed
by xPUs and (b) GEMVoperations are processed by PIMunits.

PACT 2025, November 3-6, Irvine, California, USA Hyeongjun Cho, Yoonho Jang, Hyungi Kim, Seongwook Kim, Keewon Kwon, Gwangsun Kim, and Seokin Hong

Saved

(a) Conventional heterogeneous system

PIM
Time

(b) Concept of batch pipelining

TimexPU
MHA

QKV FFN

B TimeAxPU

QKV FFN

A

APIM
Time

MHA

B

B

: Dataflow : Independent

Figure 5: Execution timelines of LLM inference on heteroge-
neous systems. (a) shows serialized execution due to inter-
device dependency; (b) shows batch pipelining with partial
overlap across batch groups A and B.
DRAM modifications, introduce significant hardware overhead. We
analyze this overhead and its impact on system performance.

3.1 Unbalanced Execution Time
Workload Scaling with Batch Size and Sequence Length:

Table 1 summarizes the time complexity of key operations of the
transformer-based LLMmodel as a function of batch size (𝐵) and se-
quence length (𝐿). During inference, the batch size (𝐵) and sequence
length (𝐿) are dynamically determined by the input. In contrast,
model-specific parameters such as the hidden dimension (𝑑𝑚𝑜𝑑𝑒𝑙)
and the feed-forward dimension (𝑑𝑓 𝑓) are fixed by the model con-
figuration. The computational cost of xPU workloads, including
QKV generation, projection, and FFN, scales linearly with both 𝐵
and 𝐿. In comparison, the computation required for the MHA layer
scales quadratically with 𝐿, making it the dominant workload at
longer sequence lengths. This difference is clearly illustrated in
Figure 6, which shows that the FLOPS associated with MHA (exe-
cuted on PIM) increase much more rapidly than those of xPU-side
operations. Furthermore, during generation, MHA becomes even
more expensive as the number of output tokens (𝑛) increases, since
new K and V vectors must be generated for each token.

Static Allocation: In heterogeneous systems, it allocates work-
loads to specific hardware units based on their computational
strength. While this strategy is effective in theory, it falls short
in practice due to real-world LLM inference workloads’ dynamic
and diverse nature. Variations in batch size and sequence length
continuously shift the ratio of workload demands about xPUs and

Table 1: Time complexity of LLM layers.

Layer Summarization Generation

QKV Gen. 𝑂 (𝐵 · 𝐿 · 𝑑𝑚𝑜𝑑𝑒𝑙 2) 𝑂 (𝐵 · 𝑑𝑚𝑜𝑑𝑒𝑙 2)
MHA 𝑂 (𝐵 · 𝐿2 · 𝑑𝑚𝑜𝑑𝑒𝑙) 𝑂 (𝐵 · (𝐿 + 𝑛) · 𝑑𝑚𝑜𝑑𝑒𝑙)

Projection 𝑂 (𝐵 · 𝐿 · 𝑑𝑚𝑜𝑑𝑒𝑙 2) 𝑂 (𝐵 · 𝑑𝑚𝑜𝑑𝑒𝑙 2)
FFN 𝑂 (𝐵 · 𝐿 · 𝑑𝑚𝑜𝑑𝑒𝑙 · 𝑑𝑓 𝑓) 𝑂 (𝐵 · 𝑑𝑚𝑜𝑑𝑒𝑙 · 𝑑𝑓 𝑓)

1 16 64 12
8

25
6

51
2

10
24

20
48

30
72

40
96

Sequence Length

101

103

105

107

109

R
at

e
of

 F
LO

PS
 in

cr
ea

se

NPU 32
PIM 32

NPU 64
PIM 64

NPU 128
PIM 128

NPU 256
PIM 256

Figure 6: Comparison of FLOPS increase for PIM and NPU
workloads with increasing sequence length. MHA on PIM
scales more rapidly than NPU-side operations, leading to
workload imbalance at longer sequence lengths.

PIM, leading to imbalanced load distribution. Therefore, one device
may remain idle for extended periods while the other becomes
a bottleneck, significantly degrading system efficiency. Figure 7
illustrates the idle time for each device in an NPU+PIM system
(see Section 6.1 for experimental details). PIM exhibits significantly
extended idle periods for small batches and short sequences, more
than 80% of total processing time. Conversely, under large batches
and extended sequences, NPU actives only 10–20% of the total pro-
cessing time, while PIM is fully operated. This imbalance reduces
overall system utilization during LLM inference.

Limitation ①: During LLM inference, heterogeneous
PIM-xPU systems experience significant underuti-
lization of computing resources due to variations in
batch size and sequence length.

3.2 Architectural Overhead in Batch Pipelining
Although several prior works attempt to adopt batch pipelin-

ing, they face fundamental limitations due to hardware conflict
and costly architectural modifications. In the ideal case (Figure 8a),
DRAM read and PIM operation for different batch groups are exe-
cuted in parallel, maximizing resource overlap and device utilization.
However, when (Figure 8b), current PIM architectures enforce ex-
clusive access to shared resources such as the row buffer and Local
I/O lines. As a result, either the system performs PIM or serves read
requests, but not both in parallel. This frequent resource conflict as
seen in the Figure 8b limits the efficiency of batch pipelining.

Several prior works have proposed batch pipelining, but these
often rely on substantial hardware modifications. For example,
AttAcc integrates hierarchical MAC units at bank and bank-group
levels to accelerate GEMV processing. However, it still suffers from
limited parallelism, as these units contend for shared resources
during DRAM read operations. NeuPIMs attempts to overcome
this by doubling the row buffer, enabling DRAM reads and PIM
operations to proceed concurrently [21, 44]. Despite these efforts,
such modifications come with a high cost; doubling the row buffer
increases DRAMmat area by up to 38% [7, 43] and adds considerable
routing complexity across multiple metal layers. These approaches
ultimately sacrifice practicality and scalability, highlighting the
need for a lightweight solution that achieves meaningful overlap
without major architectural redesigns.

Limitation ②: Achieving effective batch pipelining
requires either substantial hardware modifications
or exclusive access scheduling between DRAM and
PIM operations.

3.3 Underutilization in Batch-Pipelining
Architecture

Even with batch pipelining, heterogeneous systems experience
residual underutilization due to delays in consecutive operations,
especially when PIM execution is involved. When DRAM accesses,
and PIM operations are restricted to exclusive execution, PIM uti-
lization declines significantly. Figure 9 shows the utilization of both
the PIM and NPU under ideal pipelining (dotted box) and exclu-
sive execution (yellow box) across varying sequence lengths for
small (𝐵=32) and large (𝐵=256) batch sizes. In small batch scenarios,

LibraPIM: Dynamic Load Rebalancing to Maximize Utilization in PIM-Assisted LLM Inference Systems PACT 2025, November 3-6, Irvine, California, USA

(a) Idle time on PIM (b) Idle time on NPU

Figure 7: Proportion of idle time for PIM and NPU under varying batch sizes and sequence lengths during GPT3 175B inference.

DRAM read operations occupy a larger proportion of the workload,
making the system more sensitive to serialization and reducing
utilization. As sequence length increases, the MHA layer becomes
the dominant component, leading to a sharp drop in PIM utilization,
particularly when the sequence length exceeds 512, due to its high
computational and bandwidth demands.

4 LibraPIM
4.1 Overview

This section introduces LibraPIM, a novel PIM architecture and
system designed to reduce idle time by dynamically balancing work-
loads between xPUs and PIM devices in batch-pipelined LLM infer-
ence. Figure 10 provides an overview of Dynamic Batch Offloading
(DBO) in LibraPIM system. At the host level, LibraPIM includes a
novel scheduler that identifies the dominant workload and adap-
tively determines the offloaded batch size to balance processing
time. The scheduler estimates workload latency based on batch
size and sequence length, referring to a table updated after each

MHA

A

QKV

RdDRAM

PUs B

A

Proj. & FFN

(b) Batch-pipeline inference

Rd

A A A

B B B

: GEMM for batch group #B
PIM

xPU

: GEMV for batch group #A
: Blocked

PIM

Rd : Read

MHA

A

QKV

RdDRAM

PUs B

A

Proj. & FFN

PIM

Rd Rd Rd Rd

(a) Ideal batch inference

xPU : GEMM for batch group #A

time

time time

time

Exclusive

Figure 8: Exclusive execution of batch pipeline inference.

1 16 64 12
8

25
6

51
2

10
24

20
48

30
72

40
96

gm
ea

n

Sequence Length

0
20
40
60
80

100

U
til

iz
at

io
n

(%
)

NPU (32) NPU (256) PIM (32) PIM (256)

Figure 9: NPU & PIM utilization with batch pipelining. The
number in brackets indicates the batch size.

Host CPU

Batch Length
0 64
1 16
2 512
3 128

Domain

PU

Group

A

Batch Length
0 512
1 1024
2 16
3 128

Domain

PIM

Group

B

Request table
W WW W

LibraPIM

Interconnect

Vector Unit

PUs (GPU, NPU, etc)

Calculate
time

Check
imbalance

Determine
offload size

Scheduler

W

GEMM offloading

LibraPIM LibraPIM LibraPIM

Figure 10: Overview of LibraPIM system.

Bank

ꞏ ꞏ ꞏ

QKV subarrays

Weight subarrays

Buffer

G
lo

ba
l B

uf
fe

r

IOSA

Slicing logic

ꞏꞏꞏ

ꞏ ꞏ ꞏ
ꞏ ꞏ ꞏ

Local I/O

Local I/O
Subarray
Row buffer

Subarray
Row buffer

Subarray
Row buffer

Subarray
Row buffer

IOSA

Slicing
transistors

ꞏꞏꞏ

ꞏ ꞏ ꞏ

I/
O

 lo
gi

c

MAC Unit

Figure 11: LibraPIM architecture.

generation stage to reflect runtime variations. This dynamic adjust-
ment ensures consistently balanced utilization across devices. In
addition, LibraPIM is built on a flexible framework that supports
various LLM models, providing broad applicability and scalability.

4.2 Bank-Sliced PIM Architecture
To avoid the delay caused by exclusive executionwhen offloading

during PIM operation, we modified the bank structure slightly.
Figure 11 illustrates the LibraPIM bank architecture, which enables
parallel PIM and read operations by partitioning each bank into
two independent sections. As shown in the figure, the Local I/O
path is divided into two parts using slicing logic, which consists
of additional transistors and one-per-bit, effectively isolating the
Local I/O path when enabled. This design allows each partition to
read data independently without resource conflicts. We refer to this
mechanism as Dual-Path EXecution (DEX), and further discuss the
impact of slicing logic on the signal-level in Section 5.

Following the division of the bank, each partition is assigned a
different workload during LLM inference. One partition performs
a standard read operation to transfer weight data for xPUs, while
the other processes GEMV operations for the MHA layer via PIM
operations. Consequently, one partition stores weight parameters
in its subarrays, while the other stores K, V data. We incorporate
an additional IOSA, the final amplifier in the DRAM hierarchy,
to ensure reliable data reads across both partitions. Since IOSA is
significantly smaller than the row buffer (256-bit for IOSA vs. 1KB
per row buffer), it introduces only a 0.002% area overhead per bank,
as calculated in our evaluation. Moreover, unlike other logic, all
banks share the I/O logic and a global buffer, which supplies vector
data to the banks for PIM operations. The global buffer can receive
vectors from within the bank or I/O logic.

4.3 Operation of Dual-Path Execution
Intra-bank: To facilitate the understanding of DEX, we illustrate

its detailed operation within a LibraPIM bank in Figure 12. First,
the slicing logic divides the bank into two partitions to prevent
resource conflicts. Each partition independently selects a subarray
and activates a row according to its specific task—one activates a
weight row for xPU access, while the other activates a K,V row for

PACT 2025, November 3-6, Irvine, California, USA Hyeongjun Cho, Yoonho Jang, Hyungi Kim, Seongwook Kim, Keewon Kwon, Gwangsun Kim, and Seokin Hong

Bank

ꞏ ꞏ ꞏ

Buffer

G
lo

ba
l B

uf
fe

r

IOSA

Sliced

IOSA

MAC Unit

Weight row

K or V row

ꞏꞏꞏꞏ ꞏ ꞏ
Sliced

Local I/O

ꞏꞏꞏꞏ ꞏ ꞏ
I/

O
 lo

gi
c

Vector

Weight

Subarray
Row buffer

Subarray
Row buffer

Sliced
Local I/O

Figure 12: Detail of DEX in LibraPIM bank.

Saved

: Workload for batch group #APIMxPU PIMxPU

(a) GEMM offloading

MHA

A

QKV

B

QKV

Rd

PIM

xPU B

A

Time

TimeRd RdDRAM

MHA

A

QKV

A

B

Rd

GEMM offloading GEMM offloading

Rd

Proj. & FFN Proj. & FFN

: Workload for batch group #B Rd : Read

Saved
MHA

A

QKV

B

QKV

Rd

PIM

xPU B

A

Time

TimeRd RdDRAM

MHA

A

QKV

A

B

Rd

GEMV offloading GEMV offloading

Proj. & FFN Proj. & FFN

Rd

(b) GEMV offloading

Saved

(c) Batch group offloading

MHA

A

QKV

B

QKV

Rd

PIM

xPU B

A

Time

TimeRd RdDRAM

AA B

Batch group offloading

Proj. & FFN

MHA

B A

B A

A B

A B

Figure 13: Concept of DBO with timing diagrams. The red
box represents offloading a partial batch.

PIM operations. The activated data from each row buffer is then
transferred through slicing Local I/O paths and IOSAs based on
column indices. Finally, the weight data is routed via I/O logic to
the xPUs, whereas the other partition’s data flows into the MAC
unit for GEMV computation with vector data from the global buffer.

Inter-bank: While LibraPIM enables DEX in multiple banks
simultaneously, the shared data bus restricts read data transfers to
one bank at a time. This constraint stems from the fixed size of the
I/O logic, which is matched with a bandwidth of standard memory
interconnects and cannot support concurrent data reads from mul-
tiple banks. Instead, LibraPIM uses DEX to read continuous data
under this constraint. LibraPIM activates rows in multiple banks
in advance to maintain high bus utilization under this constraint.
Once the read from the currently active bank is completed, the
system begins reading from another bank already activated via
DEX. This interleaved access pattern overlaps the precharge and
activation latencies across banks, ensuring continuous data delivery
and maximizing data bus utilization during PIM operation.

4.4 Dynamic Batch Offloading
Key Idea: To mitigate both utilization and performance degra-

dation caused by static allocation and workload imbalance (Sec-
tion 3.1), we propose the DBO mechanism. DBO dynamically redis-
tributes portions of batch groups across devices when a noticeable
execution time gap is observed, utilizing DEX mechanism.

Figure 13a illustrates the scenario where xPU execution exceeds
that of PIM. DBO offloads a portion of the xPU’s batch group to

LibraPIM. Since all batches share the same weight parameters,
weights fetched by the xPU simultaneously serve as operands for
PIM, enabling overlapped GEMM without additional data transfer.
Figure 13b shows the opposite scenario, where PIM execution ex-
ceeds xPU. DBO transfers K,V vectors from selected batches to the
xPU, enabling simultaneous attention computation on the xPU and
GEMV on the PIM, effectively balancing execution times.

In contrast to the above two cases, partial offloading becomes
inefficient when the batch group size is too small due to the over-
head of offloading and memory reads. In such scenarios, shown
in Figure 13c, LibraPIM offloads an entire batch group to the PIM.
Both devices then process equivalent workloads in parallel. Since
GEMM operations on small batches remain memory-intensive, PIM
can complete their workloads nearly as fast as xPU’s operation,
achieving little synchronization overhead.

Hardware Operation for DBO: Figure 14 illustrates the de-
tailed hardware mechanisms enabling DBOwithin a LibraPIM bank.
Each DRAM bank is partitioned by slicing logic into two regions:
the weight partition storingmodel weights accessed by the xPU, and
the KV partition holding K,V matrices directly supplying operands
to LibraPIM’s MAC units for GEMV.

Upon initiating the computation phase, LibraPIM bank activates
the necessary rows from both partitions: weights from the weight
partition and input vectors from the KV partition. As depicted in
Figure 14a, activated weight rows are sequentially transferred to
the global buffer. Then, as Figure 14b illustrates, the global buffer
simultaneously propagates these weights to both the xPU and Li-
braPIM MAC units, enabling concurrent xPU-based GEMM and
LibraPIM-based GEMM.

When PIM’s MHA execution time exceeds the xPU, input vectors
selected from xPU for GEMV offloading are independent and unique
per batch. Consequently, these vectors bypass the global buffer and
are streamed directly through I/O logic.

4.5 Scheduling
We designed the DBO scheduler to determine the offloading

batch size accurately. This scheduler is implemented in software and
runs on the host. It predicts the processing time of each device and
dynamically adjusts the offloading batch size accordingly. The host
executes the scheduling process at the beginning of each embedding
layer, which is the first layer during generation, as some batches
may be completed while others still need processing. The system
maintains a balanced workload distribution by continuously re-
evaluating the offloading batch size.

(a) Weight & Vector rows activation (b) Weight read & GEMV processing

Vector row
W

eight row

Read sequence

IOSA

Subs

IOSA

Bank 0
MAC

IOSA

IOSA

Bank 3
MAC

IOSA

Subs

IOSA

Bank 1
MAC

IOSA

Subs

IOSA

Bank 2
MAC

Global Buffer Weight

IOSA

Subs

IOSA

Bank 0
MAC

IOSA

IOSA

Bank 3
MAC

IOSA

Subs

IOSA

Bank 1
MAC

IOSA

Subs

IOSA

Bank 2
MAC

Weight

ReadBuffer writing

Figure 14: Batch offloading when processing large FFN.

LibraPIM: Dynamic Load Rebalancing to Maximize Utilization in PIM-Assisted LLM Inference Systems PACT 2025, November 3-6, Irvine, California, USA

Algorithm 1 Dynamic Batch Offloading Algorithm
1: Input: Longest sequence length 𝐿, Size of batch group 𝐵
2: 𝑚, 𝑛 : batch size for offloading
3: 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑃𝐼𝑀 : # of PIM channels
4: ⊲ Processing time← (# of Bytes)/FLOPS
5: 𝑡𝑄𝐾𝑉𝑥𝑃𝑈 ← (𝐾𝑄𝐾𝑉 · 𝑑2𝑚𝑜𝑑𝑒𝑙 · 𝐵)/𝐹𝐿𝑂𝑃𝑆𝑥𝑃𝑈
6: 𝑡𝑃𝑟𝑜 𝑗𝑥𝑃𝑈 ← (𝐾𝑃𝑟𝑜 𝑗 · 𝑑2𝑚𝑜𝑑𝑒𝑙 · 𝐵)/𝐹𝐿𝑂𝑃𝑆𝑥𝑃𝑈
7: 𝑡𝐹𝐹𝑁𝑥𝑃𝑈 ← (𝐾𝐹𝐹𝑁 · 𝑑𝑚𝑜𝑑𝑒𝑙 · 𝑑𝑓 𝑓 · 𝐵)/𝐹𝐿𝑂𝑃𝑆𝑥𝑃𝑈
8: 𝑡𝑀𝐻𝐴𝑃𝐼𝑀 ← (𝐾𝑀𝐻𝐴 · 𝑑𝑚𝑜𝑑𝑒𝑙 · 𝐵 · 𝐿)/𝐹𝐿𝑂𝑃𝑆𝑃𝐼𝑀
9: ⊲ Too small batch case
10: if 𝐵 < 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑃𝐼𝑀 then
11: Batch_group_offload(𝐵)
12: return
13: ⊲ Longer FFN case
14: else if 𝑡𝑄𝐾𝑉𝑥𝑃𝑈 + 𝑡𝑃𝑟𝑜 𝑗𝑥𝑃𝑈 + 𝑡𝐹𝐹𝑁𝑥𝑃𝑈 > 𝑡𝑀𝐻𝐴𝑃𝐼𝑀 then
15: 𝑡𝐹𝐹𝑁𝑥𝑃𝑈 ← (𝐾𝐹𝐹𝑁 · 𝑑𝑚𝑜𝑑𝑒𝑙 · 𝑑𝑓 𝑓 · (𝐵 −𝑚))/𝐹𝐿𝑂𝑃𝑆𝑥𝑃𝑈
16: 𝑡𝐹𝐹𝑁𝑃𝐼𝑀 ← (𝐾𝐹𝐹𝑁 · 𝑑𝑚𝑜𝑑𝑒𝑙 · 𝑑𝑓 𝑓 ·𝑚)/𝐹𝐿𝑂𝑃𝑆𝑥𝑃𝑈
17: 𝑚 ← Offloading_FFN_size(𝑡𝑄𝐾𝑉𝑥𝑃𝑈 , 𝑡𝑃𝑟𝑜 𝑗𝑥𝑃𝑈 , 𝑡𝐹𝐹𝑁𝑥𝑃𝑈

𝑡𝑀𝐻𝐴𝑃𝐼𝑀 , 𝑡𝐹𝐹𝑁𝑃𝐼𝑀)
18: Offload_FFN(𝑚)
19: return
20: ⊲ Longer MHA case
21: else if 𝑡𝑄𝐾𝑉𝑥𝑃𝑈 + 𝑡𝑃𝑟𝑜 𝑗𝑥𝑃𝑈 + 𝑡𝐹𝐹𝑁𝑥𝑃𝑈 < 𝑡𝑀𝐻𝐴𝑃𝐼𝑀 then
22: 𝑡𝑀𝐻𝐴𝑥𝑃𝑈 ← (𝐾𝑀𝐻𝐴 · 𝑑𝑚𝑜𝑑𝑒𝑙 · 𝑛 · 𝐿)/𝐹𝐿𝑂𝑃𝑆𝑥𝑃𝑈 _𝐺𝐸𝑀𝑉
23: 𝑡𝑀𝐻𝐴𝑃𝐼𝑀 ← (𝐾𝑀𝐻𝐴 · 𝑑𝑚𝑜𝑑𝑒𝑙 · (𝐵 − 𝑛) · 𝐿)/𝐹𝐿𝑂𝑃𝑆𝑃𝐼𝑀
24: 𝑛 ← Offloading_MHA_size(𝑡𝑄𝐾𝑉𝑥𝑃𝑈 , 𝑡𝑃𝑟𝑜 𝑗𝑥𝑃𝑈 , 𝑡𝐹𝐹𝑁𝑥𝑃𝑈

𝑡𝑀𝐻𝐴𝑥𝑃𝑈 , 𝑡𝑀𝐻𝐴𝑃𝐼𝑀)
25: Offload_MHA(𝑛)
26: return
27: else
28: return
29: end if

The scheduler determines the offloading batch size using Algo-
rithm 1 based on the FLOPs of each device. At the start of each
generation stage, the scheduler receives several parameters, includ-
ing input parameters and model parameters. Input parameters, such
as sequence length and batch size, are determined by the inference
task, while model parameters are fixed based on the model archi-
tecture. In this context, 𝐾𝑥 is a linear constant that accounts for the
ratio of the hidden layer per model (e.g., 𝐾 = 16 in GPT3’s FFN).
Also, since the processing times among batches are different due
to sequence length, the scheduler predicts processing time with
the longest sequence which includes input length and generated
tokens in each batch group as a dominant parameter.

In the first step, the scheduler calculates the processing time for
each layer based on the allocated device throughput (lines 5–8).
Since LibraPIM enables parallel execution, memory read latency,
including vector processing time, is disregarded, which introduces
minimal overhead in the overall execution. Next, the scheduler
checks whether the batch group size is smaller than the number of
available PIM channels, each of which can independently process a
batch. If this condition holds, the entire batch group is offloaded to
the PIM for parallel execution. If not, the scheduler compares the
processing times of the devices to identify the one with the longer
processing time and determines which workload to offload (lines
14 and 21). If offloading is needed, the scheduler recomputes the
processing time for both devices and adjusts the offloading batch
size (lines 15–17 and 22–24). Finally, it identifies the optimal batch
size for offloading and executes the batch transfer (lines 17 and 25).

𝑡𝑄𝐾𝑉𝑥𝑃𝑈 + 𝑡𝑃𝑟𝑜 𝑗𝑥𝑃𝑈 + 𝑡𝐹𝐹𝑁𝑥𝑃𝑈 = 𝑡𝑀𝐻𝐴𝑃𝐼𝑀 + 𝑡𝐹𝐹𝑁𝑃𝐼𝑀 (1)

In lines 17 and 24, the offloading functions compare the pro-
cessing times of the xPU and LibraPIM to determine the optimal
offloading batch size by formulating an equation. Equation (1) cal-
culates𝑚, representing the batch size to be offloaded to the PIM

device for FFN processing. The left-hand side of the equation repre-
sents the xPU’s processing time, while the right-hand side accounts
for the PIM, including the offloaded FFN workload. The scheduler
determines the appropriate𝑚 by balancing processing times.

𝑡𝑄𝐾𝑉𝑥𝑃𝑈 + 𝑡𝑃𝑟𝑜 𝑗𝑥𝑃𝑈 + 𝑡𝐹𝐹𝑁𝑥𝑃𝑈 + 𝑡𝑀𝐻𝐴𝑥𝑃𝑈 = 𝑡𝑀𝐻𝐴𝑃𝐼𝑀 (2)

Similar to equation (1), equation (2) calculates 𝑛, representing
the batch size to be offloaded to the xPUs for MHA processing. In
this case, the left-hand side of the equation consists of four terms,
as xPUs handle four different operations sequentially. Additionally,
since xPUs cannot fully utilize their throughput in GEMV opera-
tions, the scheduler accounts for the FLOPs of xPUs required for
GEMV when computing 𝑡𝑀𝐻𝐴𝑥𝑃𝑈 . By incorporating these factors,
the scheduler ensures high utilization across devices.

5 Implementation
This section details the design of LibraPIM at both the hardware

and system levels. We analyze the impact of integrating bank slicing
logic, particularly considering timing constraints. Based on these
findings, we present the realistic operation flow considering DRAM
timing constraints and outline the mapping method for K, V, and
weight data. Additionally, we introduce a dynamic partitioning
technique that enables flexible bank partition size into equal halves
and customized ratios to accommodate varying K, V, and weight
sizes, ensuring adaptability across different workloads.

1.8V

0V

0.9V

1.8V

0V

0.9V

1.8V

0V

0.9V

Default Default

Case 0

Case 1

4ns 6ns 8ns 10ns 12ns

ꞏꞏꞏ

ꞏ ꞏ ꞏ

ꞏ ꞏ ꞏ

ꞏꞏꞏꞏ ꞏ ꞏ

ꞏꞏꞏ
ꞏꞏꞏ

IOSA

Subarray
Row buffer

Subarray
Row buffer

Subarray
Row buffer

ꞏꞏꞏ

ꞏ ꞏ ꞏ

ꞏ ꞏ ꞏ

ꞏꞏꞏꞏ ꞏ ꞏ

ꞏꞏꞏ
ꞏꞏꞏ

IOSA

IOSA

Subarray
Row buffer

Case 0/1

Subarray
Row buffer

Case 0 Case 1

Figure 15: Circuit simulation waveform of segregation logic.

5.1 Circuit-level Implementation
To evaluate the impact of bank slicing logic at the circuit level,

we designed a simplified LibraPIM bank model using Cadence Vir-
tuoso [6]. Figure 15 illustrates the methodology and waveforms
for three test cases. We use the original bank organization as a
baseline and compare it against two modified cases: one with the
partitioned bank and the other with the bank partitions connected
through slicing logic. To assess the impact of bank slicing logic
on latency, we measure the voltage propagation delay from the
row buffer to the IOSA, which directly influences the tCCD tim-
ing constraint—the key timing unit for consecutive reads or PIM
operations. We also evaluate the critical path by measuring the
delay from the farthest subarray to the IOSA across all cases. As
shown in the figure, the slicing logic introduces minimal impact on
the tCCD constraint. In the sliced case (case 0), data transfer time
is reduced due to the shortened path. In connected case (case 1),
latency slightly increases, but the additional delay remains within

PACT 2025, November 3-6, Irvine, California, USA Hyeongjun Cho, Yoonho Jang, Hyungi Kim, Seongwook Kim, Keewon Kwon, Gwangsun Kim, and Seokin Hong

acceptable bounds under modern DRAM constraints. Overall, the
segregation logic introduces only a 2% timing overhead in the worst
case, confirming its negligible impact on system.

5.2 Operation Timing
Figure 16 presents a time diagram comparing a common PIM

bank and a LibraPIM bank, considering DRAM timing constraints
when executing PIM and read operations. We assume that all banks
perform the same PIM operation in response to a single PIM com-
mand, enabling simultaneous execution— a common technique
in PIM devices [3, 20, 27, 36]. As shown in (a), conventional PIM
devices execute commands sequentially, waiting to complete the
previous operation before proceeding. In contrast, LibraPIM en-
ables parallel execution of PIM and read operations, effectively
overlapping delayed execution time for improved efficiency. Addi-
tionally, due to tFAW constraints preventing voltage drops caused
by consecutive row activations, LibraPIM schedules commands
with tFAW intervals. However, tFAW contributes little to the total
operation time by overlapping with consecutive tCCD. Moreover,
since commercial PIM products are actively working to mitigate
tFAW limitations to enable all-bank PIM operations, there is poten-
tial to further reduce tFAW overhead in LibraPIM’s design [20, 36].

5.3 Data Mapping
LibraPIM maps data based on their characteristics to enable fast

data access in each operation, as illustrated in Figure 17. Weights
are interleaved from the channel to the bank to read weight data
fast, allowing data to be read across the entire channel in parallel
and quickly reconstructed into the original matrix. However, since
each MAC unit within a bank requires dedicated K, V data, each K,
V matrix is gathered in allocated bank. This mapping strategy is im-
plemented by setting an offset address for each operation, as shown
in (a) of the figure. The system efficiently manages data across PIM
devices and xPUs by leveraging these offset-based mappings.

In the case of MHA offloading, the K, V data allocated for offload-
ing is stored in the weight partition to enable parallel execution.
Since a bank cannot access two different rows within the same par-
tition simultaneously, the K, V data for offloading is stored in the
weight partition and accessed using parallel execution during MHA
processing, as illustrated in (b) of Figure 17. For the same reason as
weight mapping, xPUs can quickly receive offloaded K, V data by
applying the same mapping method used for weights but with a
different row offset. Additionally, since MHA offloading requires
only K, V data and not weight data, the bank can avoid resource
conflicts between weight and K, V data during read operations.

Time
Partition 0

Partition 1

PIM read

Read PRE

PIM PRE

Commad

ACT 2048

PIM ACT 0

ACT 2049

PIM ACT 1

Read

PIM read

tRCD tCCD x n tRP tRCD

Time
PIM read PIM PRE

Commad

ACT 2048PIM ACT 0 Read
tCCD x ntRP tRCDtRCD tCCD x n

(a) Exclusive execution in prior PIM

(b) Dual-Path EXectuion in LibraPIMtFAW
tCCD x nBank 0

Bank 0

Time

Figure 16: Timing diagram of normal PIM and LibraPIM
interface when processing PIM and read operations.

3
Bank

Bank 0

QKV

Weight
subarrays

Logic

K,V

Weight

Row offset (2048)

2048
2 2048
1 2048
0 2048

Row

Bank 0
Weight

subarrays

Logic

(a) Weight & K,V mapping (b) K,V mapping for MHA offloading

0
BankK, V

3
0 2
0 1
0 0

Row

Bank offset (0)

3
BankK, V

4096
2 4096
1 4096
0 4096

Row

K,V

MHA offloading

QKV

K,V

Figure 17: Weight and KV mapping in LibraPIM.
5.4 Discussion

Address mapping: As discussed in the previous section, weight
and K, V data require different data mapping schemes, necessitat-
ing distinct address mappings. In a conventional system, changing
the mapping in real-time is infeasible since mapping method is
determined by BIOS. Fortunately, several studies have explored
techniques for enabling dynamic address mapping [11, 14, 58]. Fur-
thermore, recent researches propose novel memory management
techniques that can support both PIM and normal memory map-
ping [35, 61]. As memory management techniques are orthogonal
to our approach, we can incorporate dynamic address mapping by
adopting them to enhance flexibility and efficiency.

Fine-grained partitioning: Going further from dividing the
bank into two parts, LibraPIM can dynamically partition the bank
optionally by grouping multiple subarrays and combining them
to form two partitions of different sizes for supporting operations
with varying sizes of weight and K, V data. Figure 18 illustrates
LibraPIM’s fine-grained partitioning architecture, which enables
flexible memory allocation. LibraPIM achieves this by deploying
multiple segregation logic units among subarrays and selectively
connecting them to construct two partitions according to a specified
ratio (n: m in the figure). This partitioning ratio can be configured
before inference begins, allowing for adaptive memory manage-
ment in edge cases, such as scenarios with short sequence lengths
and small batch sizes, where fixed partitioning may be inefficient.
6 Evaluation
6.1 Methodology

Weevaluate the effectiveness of LibraPIM by comparing it against
three baseline configurations: (1) NPU+PIM based on the AiM ar-
chitecture [20], and two state-of-the-art heterogeneous systems,
AttAcc [44] and NeuPIMs [21]. Each baseline adopts its respective
optimization strategies: AttAcc applies head-level pipelining and
FFN co-processing, NeuPIMs leverages head-level pipelining and
batch grouping, and LibraPIM adopts DEX and DBO with batch
pipelining. NPU+AiM does not apply any optimization techniques
beyond standard execution.

Bank 0
Subarrays

Subarrays
Logic

Subarrays
Logic

Subarrays

Multiple Slicing logics m : n partitioning

ꞏꞏꞏ

Bank 0
Weight

Partition

K, V
Partition

K, V

K, V

K, V

Weight

Weight

ꞏꞏꞏ

ꞏꞏꞏ

ꞏꞏꞏ

ꞏꞏꞏ

Subarray

ꞏꞏꞏ

ꞏꞏꞏ

m
 subarray

n
subarray

Figure 18: Fine-grained partitioning in LibraPIM.

LibraPIM: Dynamic Load Rebalancing to Maximize Utilization in PIM-Assisted LLM Inference Systems PACT 2025, November 3-6, Irvine, California, USA

16 64 12
8

25
6

51
2

10
24

20
48

40
96

0

5

10

15

No
rm

al
ize

d
Sp

ee
d-

Up Batch Size = 32

16 64 12
8

25
6

51
2

10
24

20
48

40
96

Batch Size = 64

16 64 12
8

25
6

51
2

10
24

20
48

40
96

Batch Size = 128

16 64 12
8

25
6

51
2

10
24

20
48

40
96

Batch Size = 256

16 64 12
8

25
6

51
2

10
24

20
48

40
96

Batch Size = 384

Sequence Length

NPU+AiM Attacc NeuPIMs LibraPIM

(a) GPT3-175B

16 64 12
8

25
6

51
2

10
24

20
48

40
96

0

5

10

15

No
rm

al
ize

d
Sp

ee
d-

Up Batch Size = 32

16 64 12
8

25
6

51
2

10
24

20
48

40
96

Batch Size = 64

16 64 12
8

25
6

51
2

10
24

20
48

40
96

Batch Size = 128

16 64 12
8

25
6

51
2

10
24

20
48

40
96

Batch Size = 256

16 64 12
8

25
6

51
2

10
24

20
48

40
96

Batch Size = 384

Sequence Length

NPU+AiM Attacc NeuPIMs LibraPIM

(b) Llama3-70B

Figure 19: Performance comparison of prior works and LibraPIM in GPT3-175B and Llama3-70B
Table 2: Configuration of simulated system

Hardware

NPU
Systolic Arrays / Size 8 / 64 x 64
Vector Units / Size 8 / 128 x 1

Memory Type / Chips HBM2 / 8

PIM

Type HBM2
Channel / Capacity 64 / 16 GB
Bank / Bankgroup 4 / 4
of MAC units 16 units per bank
tCL-tRCD-tRP 14-14-14

LLM Model # of Decoders # of Heads
GPT3-175B 96 96
Llama3-70B 80 64

We evaluate two widely used large language models in data-
center inference, GPT3 175B[5] and Llama3-70B[15], using input
sequences sampled from the Alpaca dataset. We vary the input
sequence length from 16 to 4096 and the batch size from 32 to 384.
For performance evaluation, we measure token generation speed
in each system and report their results relative to the NPU+AiM.

Our simulation environment builds upon the NeuPIMs hetero-
geneous system simulator [22], extended with the ONNXim NPU
simulator [17, 23] and a modified version of DRAMsim3 [40]. We
enhance DRAMsim3 to support PIM execution modeling and bench-
mark integration. To ensure fair comparisons, all systems adopt
identical hardware and memory configurations. We summarize con-
figuration of the simulator in Table 2. We further analyze system-
level energy consumption, PIM utilization, and power breakdowns.
The DRAM energy model follows JEDEC standards and incorpo-
rates read and PIM operations. Area overheads are estimated using
CACTI 7.0 at 22nm process technology [4, 42].

6.2 Performance
Figure 19 compares LibraPIM against several baselines across

two LLM workloads, with all results normalized to the NPU+AiM
system.While all heterogeneous systems outperform the NPU+AiM
baseline, LibraPIM consistently achieves the highest speedups, av-
eraging 6.2x, 4.4x, and 2.1x over NPU+AiM, AttAcc, and NeuPIMs,

respectively. We breakdown the results by batch size and sequence
length since they significantly influence the performance.

Small batch size & short sequence length: In this case, the
workload is dominated by NPU execution, but the NPU operates in
a memory-bound region, resulting in long execution times with low
computational efficiency. Meanwhile, the overlap between NPU and
PIM computations remains narrow, as PIM has minimal workload.
Under these conditions, LibraPIM achieves consistent performance
gains primarily through batch group offloading via DBO, which of-
floads the entire group’s FFN operations to PIM, enabling otherwise
idle PIM resources to contribute to computation.

Large Batch Case: As the batch size increases, the execution
time of the PIM increases more rapidly than that of the NPU. While
the NPU continues to benefit from batching efficiency, the grow-
ing PIM workload results in the execution times of both devices
becoming increasingly similar. This leads to a longer period during
which NPU and PIM computations can proceed in parallel, allow-
ing more effective use of DEX. In this setting, LibraPIM further
applies DBO to offload FFN workloads to PIM. For instance, in the
GPT3-175B workload with a batch size of 384, up to 64 batches—the
number of available PIM channels—can be offloaded in parallel.
When the PIM becomes more heavily loaded, LibraPIM shifts to
MHA offloading to maintain parallelism. This combination of DEX
and DBO contributes to performance improvements in large-batch
configurations by maintaining high utilization across devices.

Long Sequence Case: With longer sequences, MHA compu-
tation increases quadratically and eventually exceeds the NPU’s
execution time. While short sequences are dominated by NPU,
longer sequences shift the dominant workload to PIM. As the exe-
cution times of both devices become more comparable, the system
benefits more from DEX. Even when PIM becomes the dominant
component, LibraPIM maintains performance improvements by
applying DBO to offload a portion of the MHA workload to the
NPU. As a result, while LibraPIM and NeuPIMs show similar per-
formance under GPT3-175B with batch size 256—where execution

PACT 2025, November 3-6, Irvine, California, USA Hyeongjun Cho, Yoonho Jang, Hyungi Kim, Seongwook Kim, Keewon Kwon, Gwangsun Kim, and Seokin Hong

times are already balanced—LibraPIM outperforms at batch size
384, due to additional gains from MHA offloading.

ComparisonwithPriorWorks: AttAcc employs FFN co-processing,
which consistently outperforms NPU+AiM. However, its serialized
processing flow between PIM and NPU imposes inherent limita-
tions on overall speedup. In contrast, LibraPIM and NeuPIMs adopt
batch pipelining to enable inter-group parallelism, which is partic-
ularly advantageous in batch inference scenarios. LibraPIM further
extends this benefit through DEX, which prevents PIM operation
blocking during overlapping NPU-PIM execution phases, thereby
improving PIM utilization across all cases. Moreover, LibraPIM
leverages DBO to mitigate workload imbalance, which can lead to
full-group stalls.

6.3 Device Utilization
To evaluate system efficiency, we measure both PIM and NPU

utilization with a batch size of 128. As shown in Figure 20a, PIM
utilization remains near zero for AttAcc and NeuPIMs at short
sequence lengths, limited by minimal MHA workload and waiting
for NPU’s workload to end. In contrast, LibraPIM achieves over
25% utilization even for short inputs, thanks to DBO, which enables
parallel operation in the whole system. AsMHAworkload increases
with sequence length, PIM utilization improves across all designs.
Nevertheless, LibraPIM consistently leads, reaching up to 38% at
the longest sequence. In Figure 20b, NPU utilization shows the
opposite trend: high for short sequences and decreasing as squences
grow longer. AttAcc declines sharply, while NeuPIM and LibraPIM
maintain higher utilization by mitigating sequential dependencies
via batch-grouping. LibraPIM sustains the highest utilization, aided
by DBO, and achieves 77% utilization at the longest sequence length.

6.4 Sensitivity Analysis
We vary the configuration and measure performance to evalu-

ate LibraPIM’s scalability across different system configurations.
Figure 21 shows the normalized performance under various NPU
configurations, using a sequence length 512 and normalized to the
32×32 NPU without DBO. In small batch cases, performance gains
remain modest across different systolic array sizes, as the NPU

1 16 64 12
8

25
6

51
2

10
24

20
48

30
72

40
96

Sequence Length

0
5

10
15
20
25
30

U
til

iz
at

io
n

(%
)

32 38
AttAcc NeuPIMs LibraPIM (No DBO) LibraPIM

(a) PIM devices

1 16 64 12
8

25
6

51
2

10
24

20
48

30
72

40
96

Sequence Length

0
20
40
60
80

100

U
til

iz
at

io
n

(%
)

AttAcc NeuPIMs LibraPIM (No DBO) LibraPIM

(b) NPU
Figure 20: Utilization of each device in Llama3-70B.

32
x3

2
64

x6
4

12
8x

12
8

25
6x

25
6

32
x3

2
64

x6
4

12
8x

12
8

25
6x

25
6

Systolic Array Size

0

5

10

15

Sp
ee

du
p Batch 32 Batch 128

No DBO With DBO

Figure 21: Performance comparison by NPU configuration.

1 16 64 12
8

25
6

51
2

10
24

20
48

30
72

40
96

Sequence Length

0.00

0.25

0.50

0.75

1.00

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J) NeuPIMs LibraPIM(DEX-only) DBO

Figure 22: Energy consumption in Llama3-70B.
cannot fully utilize larger compute units due to limited parallelism,
regardless of the PIM architecture. Additionally, the benefit of DBO
is minimal for small batch sizes, as the workload is too small to
enable meaningful offloading. In contrast, for batch size 256, we ob-
serve notable improvements in the 32×32 and 64×64 configurations.
However, for larger NPUs (e.g., 128×128 and 256×256), this size is
insufficient for offloading, regarding as a small batch size to them.

6.5 Area and Power Overheads
Table 3 summarizes the additional components introduced in

LibraPIM, based on the AiM architecture’s bank, along with their re-
spective area overheads. The segregation logic, implemented using
a simple transistor, adds a negligible overhead in the bank. Includ-
ing an extra IOSA in each bank contributes only 0.002% overhead,
as IOSA operates on decoded column data rather than the full subar-
ray row size. Additionally, a dedicated column predecoder/decoder
for PIM operations—added to enable parallel execution—introduces
a modest overhead of 0.03%. LibraPIM achieves a minimal total area
overhead of just 0.032%, demonstrating its hardware efficiency.

We present the energy consumption of LibraPIM in Figure 22 and
compare it against NeuPIMs under the batch size of 128. Without
DBO, LibraPIM exhibits similar energy usage due to the comparable
computational workload required by MHA processing. However,
with DBO enabled, LibraPIM shows higher energy consumption for
shorter sequences, as DBO increases the number of PIM operations.
This overhead diminishes as the sequence length grows since DBO
reduces PIM activity in longer sequences. As a result, the total
energy consumption of LibraPIM gradually aligns with that of
NeuPIMs, with an average overhead of approximately 20%.Table 3: Area overhead in LibraPIM bank.

Logic Rate
Column predecoder & decoder 0.030%

Segregation logic Negligible
IOSA 0.002%
Total 0.032%

LibraPIM: Dynamic Load Rebalancing to Maximize Utilization in PIM-Assisted LLM Inference Systems PACT 2025, November 3-6, Irvine, California, USA

7 Related Works
Processing-In-Memory devices: Building on the advantages

of PIM technology, leading memory manufacturers have developed
their own PIM devices. AiM incorporates multipliers and adder
trees within each bank to accelerate GEMV processing [20, 36].
Similarly, HBM-PIM integrates multipliers and adders within each
bank; however, these units operate independently, enabling sup-
port for general arithmetic operations. Both manufacturers have
successfully fabricated their PIM architectures as commercial prod-
ucts [30, 31, 33, 34, 37]. UPMEM is a prototype PIM device that
integrates a general-purpose processing unit directly within the
memory die [10]. Since UPMEM’s core is based on the RISC-V ar-
chitecture, users can develop their applications using UPMEM’s
APIs, enabling programmable PIM environment.

Memory management in PIM: PIM operations require bank-
centric data access, conflictingwith conventional channel-interleaved
address mappings. To address this, PIM-MMU introduces a hard-
ware/software co-designed memory controller that remaps data
into PIM-friendly regions by translating standard addresses into
bank-consecutive ones [35]. It also offers user-level APIs for easy
data management. Similarly, UM-PIM classifies memory pages as
PIM or normal based on the physical address’s MSB during address
translation [61]. It then aggregates PIM-designated pages within
specific banks and supports virtual address generation to unify data
access across standard and PIM operations.

8 Conclusion
Heterogeneous PIM-xPU systems combine xPUs (i.e., GPUs or

NPUs) and PIM devices to leverage their strengths for LLM infer-
ence. However, these systems often suffer from imbalanced pro-
cessing times across devices, leading to underutilization and perfor-
mance bottlenecks due to shared memory resources. We propose
LibraPIM, a novel framework that addresses workload imbalance
and improves utilization of computing resources through dynamic
workload offloading. The underlying architecture, based on bank
slicing, decouples DRAM access from PIM operations, enabling
dual-path execution and allowing both operations to proceed con-
currently without interference. This architecture resolves resource
conflicts between DRAM access and PIM operations, enabling true
parallelism. LibraPIM improves PIM utilization by up to 38% and
overall performance by 2.1x compared to the state-of-the-art PIM-
NPU system.

References
[1] Saurabh Agarwal, Bilge Acun, Basil Hosmer, Mostafa Elhoushi, Yejin Lee, Shiv-

aram Venkataraman, Dimitris Papailiopoulos, and Carole-Jean Wu. 2024. CHAI:
Clustered Head Attention for Efficient LLM Inference. arXiv:2403.08058 [cs.LG]
https://arxiv.org/abs/2403.08058

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2015. A scalable processing-in-memory accelerator for parallel graph processing.
In Proceedings of the 42nd Annual International Symposium on Computer Architec-
ture (Portland, Oregon) (ISCA ’15). Association for Computing Machinery, New
York, NY, USA, 105–117. doi:10.1145/2749469.2750386

[3] Daehyeon Baek, Soojin Hwang, and Jaehyuk Huh. 2024. pSyncPIM: Partially
Synchronous Execution of Sparse Matrix Operations for All-Bank PIM Archi-
tectures. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 354–367. doi:10.1109/ISCA59077.2024.00034

[4] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories. ACM Trans. Archit. Code Optim. 14, 2, Article
14 (jun 2017), 25 pages. doi:10.1145/3085572

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[6] Cadence. [n. d.]. Cadence Virtuoso. https://www.cadence.com/en_US/home/
tools/custom-ic-analog-rf-design/layout-design/virtuoso-layout-suite.html.

[7] Niladrish Chatterjee, Mike O’Connor, Donghyuk Lee, Daniel R. Johnson,
Stephen W. Keckler, Minsoo Rhu, and William J. Dally. 2017. Architecting an
Energy-Efficient DRAM System for GPUs. In 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 73–84. doi:10.1109/HPCA.
2017.58

[8] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138. doi:10.1109/
JSSC.2016.2616357

[9] Zhoujun Cheng, Jungo Kasai, and Tao Yu. 2023. Batch Prompting: Efficient
Inference with Large Language Model APIs. arXiv:2301.08721 [cs.CL] https:
//arxiv.org/abs/2301.08721

[10] F. Devaux. 2019. The true Processing In Memory accelerator. In 2019 IEEE Hot
Chips 31 Symposium (HCS). IEEE Computer Society, Los Alamitos, CA, USA, 1–24.
doi:10.1109/HOTCHIPS.2019.8875680

[11] Alexandar Devic, Siddhartha Balakrishna Rai, Anand Sivasubramaniam, Ameen
Akel, Sean Eilert, and Justin Eno. 2022. To PIM or not for emerging general
purpose processing in DDR memory systems. In Proceedings of the 49th Annual
International Symposium on Computer Architecture (New York, New York) (ISCA
’22). Association for Computing Machinery, New York, NY, USA, 231–244. doi:10.
1145/3470496.3527431

[12] João Dinis Ferreira, Gabriel Falcao, Juan Gómez-Luna, Mohammed Alser, Lois
Orosa, Mohammad Sadrosadati, Jeremie S. Kim, Geraldo F. Oliveira, Taha
Shahroodi, Anant Nori, and Onur Mutlu. 2022. pLUTo: Enabling Massively
Parallel Computation in DRAM via Lookup Tables. In 2022 55th IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). 900–919. doi:10.1109/
MICRO56248.2022.00067

[13] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017.
Tetris: Scalable and efficient neural network acceleration with 3d memory. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems. 751–764.

[14] Mohsen Ghasempour, Aamer Jaleel, Jim D. Garside, and Mikel Luján. 2016.
DReAM: Dynamic Re-arrangement of Address Mapping to Improve the Per-
formance of DRAMs. In Proceedings of the Second International Symposium on
Memory Systems (Alexandria, VA, USA) (MEMSYS ’16). Association for Computing
Machinery, New York, NY, USA, 362–373. doi:10.1145/2989081.2989102

[15] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo
Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun
Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya
Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe
Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis,
Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego

https://arxiv.org/abs/2403.08058
https://arxiv.org/abs/2403.08058
https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1109/ISCA59077.2024.00034
https://doi.org/10.1145/3085572
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/layout-design/virtuoso-layout-suite.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/layout-design/virtuoso-layout-suite.html
https://doi.org/10.1109/HPCA.2017.58
https://doi.org/10.1109/HPCA.2017.58
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://arxiv.org/abs/2301.08721
https://arxiv.org/abs/2301.08721
https://arxiv.org/abs/2301.08721
https://doi.org/10.1109/HOTCHIPS.2019.8875680
https://doi.org/10.1145/3470496.3527431
https://doi.org/10.1145/3470496.3527431
https://doi.org/10.1109/MICRO56248.2022.00067
https://doi.org/10.1109/MICRO56248.2022.00067
https://doi.org/10.1145/2989081.2989102

PACT 2025, November 3-6, Irvine, California, USA Hyeongjun Cho, Yoonho Jang, Hyungi Kim, Seongwook Kim, Keewon Kwon, Gwangsun Kim, and Seokin Hong

Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank
Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra,
Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon
Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo
Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasu-
den Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan,
Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsim-
poukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike
Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi,
Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh
Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Ro-
han Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro,
Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini,
Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey
Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky,
Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie
Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong,
Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang,
Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, XueweiWang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon,
Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet,
Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew
Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ram-
chandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu
Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan,
Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram
Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl
Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim,
Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph
Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowl-
ing, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood,
Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei
Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Cag-
gioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi,
Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Han-
nah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry
Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus,
Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan
McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U,
Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal
Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee
Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt,
Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Has-
son, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya
Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike
Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Niko-
lay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart,
Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan

Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyag-
ina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Ran-
gaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru
Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy,
Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen,
Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer
Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney
Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robin-
son, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked,
Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao,
Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying
Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian,
Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783

[16] Ozgur Guldogan, Jackson Kunde, Kangwook Lee, and Ramtin Pedarsani.
2024. Multi-Bin Batching for Increasing LLM Inference Throughput.
arXiv:2412.04504 [cs.CL] https://arxiv.org/abs/2412.04504

[17] Hyungkyu Ham, Wonhyuk Yang, Yunseon Shin, Okkyun Woo, Guseul Heo,
Sangyeop Lee, Jongse Park, and Gwangsun Kim. 2024. ONNXim: A Fast, Cycle-
level Multi-core NPU Simulator. arXiv preprint arXiv:2406.08051 (2024).

[18] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H Oh, Yeonhong Park,
Yoonho Song, Jung-Hun Park, Sanghee Lee, Kyoung Park, Jae W Lee, et al. 2020.
Aˆ 3: Accelerating attention mechanisms in neural networks with approximation.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 328–341.

[19] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi, Sung Jun
Jung, and Jae W Lee. 2021. ELSA: Hardware-software co-design for efficient,
lightweight self-attention mechanism in neural networks. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 692–705.

[20] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim, Il Park,
Mithuna Thottethodi, and T. N. Vijaykumar. 2020. Newton: A DRAM-maker’s
Accelerator-in-Memory (AiM) Architecture for Machine Learning. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 372–
385. doi:10.1109/MICRO50266.2020.00040

[21] Guseul Heo, Sangyeop Lee, Jaehong Cho, Hyunmin Choi, Sanghyeon Lee,
Hyungkyu Ham, Gwangsun Kim, Divya Mahajan, and Jongse Park. 2024. Ne-
uPIMs: NPU-PIM Heterogeneous Acceleration for Batched LLM Inferencing. In
Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (La Jolla, CA, USA) (AS-
PLOS ’24). Association for Computing Machinery, New York, NY, USA, 722–737.
doi:10.1145/3620666.3651380

[22] Guseul Heo, Sangyeop Lee, Jaehong Cho, Hyunmin Choi, Sanghyeon Lee,
Hyungkyu Ham, Gwangsun Kim, Divya Mahajan, and Jongse Park. 2024. Ne-
uPIMs Simulator. https://github.com/casys-kaist/NeuPIMs.

[23] Yunseon Shin Okkyun Woo Guseul Heo Sangyeop Lee Jongse Park Gwang-
sun Kim Hyungkyu Ham, Wonhyuk Yang. 2024. ONNXim: A Fast, Cycle-level
Multi-core NPU Simulator. arXiv:2406.08051 [cs.AR] https://arxiv.org/abs/2406.
08051

[24] JEDEC. 2016. High Bandwidth Memory DRAM (HBM1, HBM2). https://www.
jedec.org/sites/default/files/docs/JESD235D.pdf.

[25] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou
Hanna, Florian Bressand, et al. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088 (2024).

[26] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Clifford Young,
Xiang Zhou, Zongwei Zhou, and David A Patterson. 2023. TPU v4: An Optically
Reconfigurable Supercomputer for Machine Learning with Hardware Support
for Embeddings. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (Orlando, FL, USA) (ISCA ’23). Association for Computing
Machinery, New York, NY, USA, Article 82, 14 pages. doi:10.1145/3579371.3589350

[27] Hongju Kal, Chanyoung Yoo, and Won Woo Ro. 2023. AESPA: Asynchronous
Execution Scheme to Exploit Bank-Level Parallelism of Processing-in-Memory.
In Proceedings of the 56th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (Toronto, ON, Canada) (MICRO ’23). Association for Computing
Machinery, New York, NY, USA, 815–827. doi:10.1145/3613424.3614314

[28] Shinhaeng Kang, Sukhan Lee, Byeongho Kim, Hweesoo Kim, Kyomin Sohn,
Nam Sung Kim, and Eojin Lee. 2022. An FPGA-based RNN-T Inference Accelerator
with PIM-HBM. In Proceedings of the 2022 ACM/SIGDA International Symposium

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.04504
https://arxiv.org/abs/2412.04504
https://doi.org/10.1109/MICRO50266.2020.00040
https://doi.org/10.1145/3620666.3651380
https://github.com/casys-kaist/NeuPIMs
https://arxiv.org/abs/2406.08051
https://arxiv.org/abs/2406.08051
https://arxiv.org/abs/2406.08051
https://www.jedec.org/sites/default/files/docs/JESD235D.pdf
https://www.jedec.org/sites/default/files/docs/JESD235D.pdf
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/3613424.3614314

LibraPIM: Dynamic Load Rebalancing to Maximize Utilization in PIM-Assisted LLM Inference Systems PACT 2025, November 3-6, Irvine, California, USA

on Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA ’22). Association
for Computing Machinery, New York, NY, USA, 146–152. doi:10.1145/3490422.
3502355

[29] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. 2016. Neurocube: a programmable digital neuromorphic ar-
chitecture with high-density 3D memory. SIGARCH Comput. Archit. News 44, 3
(jun 2016), 380–392. doi:10.1145/3007787.3001178

[30] Jin Hyun Kim, Shin-Haeng Kang, Sukhan Lee, Hyeonsu Kim, Yuhwan Ro, Se-
ungwon Lee, David Wang, Jihyun Choi, Jinin So, YeonGon Cho, JoonHo Song,
Jeonghyeon Cho, Kyomin Sohn, and Nam Sung Kim. 2022. Aquabolt-XL HBM2-
PIM, LPDDR5-PIM With In-Memory Processing, and AXDIMMWith Accelera-
tion Buffer. IEEE Micro 42, 3 (2022), 20–30. doi:10.1109/MM.2022.3164651

[31] Jin Hyun Kim, Shin-haeng Kang, Sukhan Lee, Hyeonsu Kim, Woongjae Song,
Yuhwan Ro, Seungwon Lee, David Wang, Hyunsung Shin, Bengseng Phuah,
Jihyun Choi, Jinin So, YeonGon Cho, JoonHo Song, Jangseok Choi, Jeonghyeon
Cho, Kyomin Sohn, Youngsoo Sohn, Kwangil Park, and Nam Sung Kim. 2021.
Aquabolt-XL: Samsung HBM2-PIM with in-memory processing for ML ac-
celerators and beyond. In 2021 IEEE Hot Chips 33 Symposium (HCS). 1–26.
doi:10.1109/HCS52781.2021.9567191

[32] Seongwook Kim, Gwangeun Byeon, Sihyung Kim, Hyungjin Kim, and Seokin
Hong. 2023. Conveyor: Towards Asynchronous Dataflow in Systolic Array
to Exploit Unstructured Sparsity. In 2023 IEEE 41st International Conference on
Computer Design (ICCD). 423–431. doi:10.1109/ICCD58817.2023.00070

[33] Daehan Kwon, Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong Park, Gi-
Moon Hong, Dongyoon Ka, Kyudong Hwang, Jeongje Park, Kyeongpil Kang,
Jungyeon Kim, Junyeol Jeon, Nahsung Kim, Yongkee Kwon, Vladimir Korni-
jcuk, Woojae Shin, Jongsoon Won, Minkyu Lee, Hyunha Joo, Haerang Choi,
Guhyun Kim, Byeongju An, Jaewook Lee, Donguc Ko, Younggun Jun, Ilwoong
Kim, Choungki Song, Ilkon Kim, Chanwook Park, Seho Kim, Chunseok Jeong,
Euicheol Lim, Dongkyun Kim, Jieun Jang, Il Park, Junhyun Chun, and Joohwan
Cho. 2023. A 1ynm 1.25V 8Gb 16Gb/s/Pin GDDR6-Based Accelerator-in-Memory
Supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep
Learning Application. IEEE Journal of Solid-State Circuits 58, 1 (2023), 291–302.
doi:10.1109/JSSC.2022.3200718

[34] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu,
Jong-Pil Son, O Seongil, Hak-Soo Yu, Haesuk Lee, Soo Young Kim, Youngmin
Cho, Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim, BengSeng Phuah,
HyoungMin Kim, Myeong Jun Song, Ahn Choi, Daeho Kim, SooYoung Kim, Eun-
Bong Kim, David Wang, Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo
Song, Jaeyoun Youn, Kyomin Sohn, and Nam Sung Kim. 2021. 25.4 A 20nm 6GB
Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable
Computing Unit Using Bank-Level Parallelism, for Machine Learning Applica-
tions. In 2021 IEEE International Solid-State Circuits Conference (ISSCC), Vol. 64.
350–352. doi:10.1109/ISSCC42613.2021.9365862

[35] Dongjae Lee, Bongjoon Hyun, Taehun Kim, and Minsoo Rhu. 2024. PIM-MMU: A
Memory Management Unit for Accelerating Data Transfers in Commercial PIM
Systems. In 2024 57th IEEE/ACM International Symposium on Microarchitecture
(MICRO). 627–642. doi:10.1109/MICRO61859.2024.00053

[36] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, Jinhyun
Kim, O Seongil, Anand Iyer, DavidWang, Kyomin Sohn, and Nam Sung Kim. 2021.
Hardware Architecture and Software Stack for PIM Based on Commercial DRAM
Technology : Industrial Product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 43–56. doi:10.1109/ISCA52012.2021.
00013

[37] Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong Park, Gimoon Hong,
Dongyoon Ka, Kyudong Hwang, Jeongje Park, Kyeongpil Kang, Jungyeon Kim,
Junyeol Jeon, Nahsung Kim, Yongkee Kwon, Kornijcuk Vladimir, Woojae Shin,
Jongsoon Won, Minkyu Lee, Hyunha Joo, Haerang Choi, Jaewook Lee, Donguc
Ko, Younggun Jun, Keewon Cho, Ilwoong Kim, Choungki Song, Chunseok Jeong,
Daehan Kwon, Jieun Jang, Il Park, Junhyun Chun, and Joohwan Cho. 2022. A
1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting
1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning
Applications. In 2022 IEEE International Solid-State Circuits Conference (ISSCC),
Vol. 65. 1–3. doi:10.1109/ISSCC42614.2022.9731711

[38] Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao Yang, Yun Liang, and
Guangyu Sun. 2024. PIM-DL: Expanding the Applicability of Commodity DRAM-
PIMs for Deep Learning via Algorithm-System Co-Optimization. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (La Jolla, CA, USA) (ASPLOS ’24).
Association for Computing Machinery, New York, NY, USA, 879–896. doi:10.
1145/3620665.3640376

[39] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong,
and Steven Chu Hong Hoi. 2021. Align before fuse: Vision and language repre-
sentation learning with momentum distillation. Advances in neural information
processing systems 34 (2021), 9694–9705.

[40] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020.
DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM Simulator. IEEE Com-
puter Architecture Letters 19, 2 (2020), 106–109. doi:10.1109/LCA.2020.2973991

[41] Yi Lu, Xin Zhou, Wei He, Jun Zhao, Tao Ji, Tao Gui, Qi Zhang, and Xuanjing
Huang. 2024. LongHeads: Multi-Head Attention is Secretly a Long Context
Processor. In Findings of the Association for Computational Linguistics: EMNLP
2024, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (Eds.). Association
for Computational Linguistics, Miami, Florida, USA, 7136–7148. doi:10.18653/v1/
2024.findings-emnlp.417

[42] Vaishnav Srinivas Naveen Muralimanohar, Ali Shafiee. 2017. CACTI 7.0. https:
//github.com/HewlettPackard/cacti.

[43] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya
Agrawal, Stephen W Keckler, and William J Dally. 2017. Fine-grained DRAM:
Energy-efficient DRAM for extreme bandwidth systems. In Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
41–54.

[44] Jaehyun Park, Jaewan Choi, Kwanhee Kyung, Michael Jaemin Kim, Yongsuk
Kwon, Nam Sung Kim, and Jung Ho Ahn. 2024. AttAcc! Unleashing the Power
of PIM for Batched Transformer-based Generative Model Inference (ASPLOS ’24).
Association for Computing Machinery, New York, NY, USA, 103–119. doi:10.
1145/3620665.3640422

[45] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed
Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient Generative LLM Infer-
ence Using Phase Splitting. In 2024 ACM/IEEE 51st Annual International Sym-
posium on Computer Architecture (ISCA). 118–132. doi:10.1109/ISCA59077.2024.
00019

[46] Akshay Krishna Ramanathan, Gurpreet S Kalsi, Srivatsa Srinivasa, Tarun Makesh
Chandran, Kamlesh R Pillai, Om J Omer, Vijaykrishnan Narayanan, and Sreeni-
vas Subramoney. 2020. Look-Up Table based Energy Efficient Processing in
Cache Support for Neural Network Acceleration. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 88–101. doi:10.1109/
MICRO50266.2020.00020

[47] Stephen Jones Nick Stam Ronny Krashinsky, Olivier Giroux and Sridhar Ra-
maswamy. 2020. NVIDIA Ampere Architecture In-Depth. https://developer.
nvidia.com/blog/nvidia-ampere-architecture-in-depth/.

[48] Stephen Jones Nick Stam Ronny Krashinsky, Olivier Giroux and Sridhar Ra-
maswamy. 2023. NVIDIA H100 Tensor Core GPU. https://resources.nvidia.com/
en-us-tensor-core/nvidia-tensor-core-gpu-datasheet.

[49] Minseok Seo, Xuan Truong Nguyen, Seok Joong Hwang, Yongkee Kwon, Guhyun
Kim, Chanwook Park, Ilkon Kim, Jaehan Park, Jeongbin Kim, Woojae Shin,
Jongsoon Won, Haerang Choi, Kyuyoung Kim, Daehan Kwon, Chunseok Jeong,
Sangheon Lee, Yongseok Choi, Wooseok Byun, Seungcheol Baek, Hyuk-Jae Lee,
and John Kim. 2024. IANUS: Integrated Accelerator based on NPU-PIM Unified
Memory System (ASPLOS ’24). Association for Computing Machinery, New York,
NY, USA, 545–560. doi:10.1145/3620666.3651324

[50] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry. 2017. Ambit: in-memory accelerator for bulk bitwise op-
erations using commodity DRAM technology. In Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture (Cambridge, Mas-
sachusetts) (MICRO-50 ’17). Association for Computing Machinery, New York,
NY, USA, 273–287. doi:10.1145/3123939.3124544

[51] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

[52] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama
2: Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]
https://arxiv.org/abs/2307.09288

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

https://doi.org/10.1145/3490422.3502355
https://doi.org/10.1145/3490422.3502355
https://doi.org/10.1145/3007787.3001178
https://doi.org/10.1109/MM.2022.3164651
https://doi.org/10.1109/HCS52781.2021.9567191
https://doi.org/10.1109/ICCD58817.2023.00070
https://doi.org/10.1109/JSSC.2022.3200718
https://doi.org/10.1109/ISSCC42613.2021.9365862
https://doi.org/10.1109/MICRO61859.2024.00053
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/ISSCC42614.2022.9731711
https://doi.org/10.1145/3620665.3640376
https://doi.org/10.1145/3620665.3640376
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.18653/v1/2024.findings-emnlp.417
https://doi.org/10.18653/v1/2024.findings-emnlp.417
https://github.com/HewlettPackard/cacti
https://github.com/HewlettPackard/cacti
https://doi.org/10.1145/3620665.3640422
https://doi.org/10.1145/3620665.3640422
https://doi.org/10.1109/ISCA59077.2024.00019
https://doi.org/10.1109/ISCA59077.2024.00019
https://doi.org/10.1109/MICRO50266.2020.00020
https://doi.org/10.1109/MICRO50266.2020.00020
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://doi.org/10.1145/3620666.3651324
https://doi.org/10.1145/3123939.3124544
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

PACT 2025, November 3-6, Irvine, California, USA Hyeongjun Cho, Yoonho Jang, Hyungi Kim, Seongwook Kim, Keewon Kwon, Gwangsun Kim, and Seokin Hong

[54] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma,
Chang Zhou, Jingren Zhou, and Hongxia Yang. 2022. Ofa: Unifying architectures,
tasks, andmodalities through a simple sequence-to-sequence learning framework.
In International conference on machine learning. ICML, 23318–23340.

[55] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[56] Amir Yazdanbakhsh, Choungki Song, Jacob Sacks, Pejman Lotfi-Kamran, Hadi
Esmaeilzadeh, and Nam Sung Kim. 2018. In-DRAM near-data approximate
acceleration for GPUs. In Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques (Limassol, Cyprus) (PACT ’18).
Association for Computing Machinery, New York, NY, USA, Article 34, 14 pages.
doi:10.1145/3243176.3243188

[57] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-
Gon Chun. 2022. Orca: A Distributed Serving System for Transformer-Based
Generative Models. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 521–538. https:
//www.usenix.org/conference/osdi22/presentation/yu

[58] Jialiang Zhang, Michael Swift, and Jing (Jane) Li. 2022. Software-defined address
mapping: a case on 3D memory. In Proceedings of the 27th ACM International

Conference on Architectural Support for Programming Languages and Operat-
ing Systems (Lausanne, Switzerland) (ASPLOS ’22). Association for Computing
Machinery, New York, NY, USA, 70–83. doi:10.1145/3503222.3507774

[59] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali
Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-trained
Transformer Language Models. arXiv:2205.01068 [cs.CL] https://arxiv.org/abs/
2205.01068

[60] Tianyi Zhang, Jonah Yi, Bowen Yao, Zhaozhuo Xu, and Anshumali Shri-
vastava. 2024. NoMAD-Attention: Efficient LLM Inference on CPUs
Through Multiply-add-free Attention. In Advances in Neural Information
Processing Systems, A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang (Eds.), Vol. 37. Curran Associates, Inc.,
112706–112730. https://proceedings.neurips.cc/paper_files/paper/2024/file/
ccda3c632cc8590ee60ca5ba226a4c30-Paper-Conference.pdf

[61] Yilong Zhao, Mingyu Gao, Fangxin Liu, Yiwei Hu, Zongwu Wang, Han Lin, Ji
Li, He Xian, Hanlin Dong, Tao Yang, Naifeng Jing, Xiaoyao Liang, and Li Jiang.
2024. UM-PIM: DRAM-based PIM with Uniform Shared Memory Space. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA).
644–659. doi:10.1109/ISCA59077.2024.00053

https://doi.org/10.1145/3243176.3243188
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://doi.org/10.1145/3503222.3507774
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://proceedings.neurips.cc/paper_files/paper/2024/file/ccda3c632cc8590ee60ca5ba226a4c30-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ccda3c632cc8590ee60ca5ba226a4c30-Paper-Conference.pdf
https://doi.org/10.1109/ISCA59077.2024.00053

	Abstract
	1 Introduction
	2 Background
	2.1 Batched LLM Inference
	2.2 DRAM-based PIM Architectures
	2.3 Limitation of Heterogeneous PIM-xPU Systems: Device Underutilization
	2.4 Recent Attempt: Batch Pipelining

	3 Motivation
	3.1 Unbalanced Execution Time
	3.2 Architectural Overhead in Batch Pipelining
	3.3 Underutilization in Batch-Pipelining Architecture

	4 LibraPIM
	4.1 Overview
	4.2 Bank-Sliced PIM Architecture
	4.3 Operation of Dual-Path Execution
	4.4 Dynamic Batch Offloading
	4.5 Scheduling

	5 Implementation
	5.1 Circuit-level Implementation
	5.2 Operation Timing
	5.3 Data Mapping
	5.4 Discussion

	6 Evaluation
	6.1 Methodology
	6.2 Performance
	6.3 Device Utilization
	6.4 Sensitivity Analysis
	6.5 Area and Power Overheads

	7 Related Works
	8 Conclusion
	References

